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Transversely Oscillating MEMS Viscometer:
The “Spider”1

K. A. Ronaldson,2 A. D. Fitt,2,3 A. R. H. Goodwin,4

and W. A. Wakeham5

The analysis of a new viscometer that takes the form of an oscillating plate,
fabricated from silicon using the methods of micro-electro-mechanical-systems
(MEMS) is considered. The instrument is designed principally for experimen-
tal use in the oil industry. The plate is 1.6 mm wide, 2.4 mm long, and 20µm
thick. It is suspended from a 0.4 mm thick support by 48 square cross-sec-
tion legs, each of length 0.5 mm width and depth of 20µm. The process of
lithography is used to deposit layers atop the silicon. These layers can then
be formed into resistors and metallic tracks. The tracks traverse the support-
ing legs to provide connections between the plate and external electronics.
The oscillating plate is a mechanical element that can be set in motion by
the force produced by the interaction between an electric current flowing in
the plate and an externally applied magnetic field. The viscometer can be
operated either in forced or transient mode and is intended for use in both
Newtonian and non-Newtonian fluids. The motion of the viscometer is ana-
lyzed for incompressible fluids, using the Navier–Stokes equations to model
the flow for both a Newtonian viscous fluid and a viscoelastic fluid where
the stress is modeled by a reduced form of Maxwell’s equations.
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1. INTRODUCTION

In this paper, we describe a transversely oscillating micro-electro-mechani-
cal system (MEMS) device intended for use with down-hole fluids such as
crude oil or brine. Viscometers are required to measure the thermophysical
properties of fluids in situ, to determine optimal production strategies, and
to exploit the value of the fluids in the well. In the oil exploration indus-
try, the fluid viscosity can indicate the permeability of the reservoir for-
mation, its flow characteristics, and the commercial value of the reservoir
fluid. Currently, samples are collected from the reservoir and then later
analyzed at the surface in a laboratory. The fluid properties and compo-
sition of a reservoir will change during its lifetime making it hard to sim-
ulate reservoir conditions in a laboratory. A hydrocarbon reservoir can
exhibit temperatures of 20–200◦C and pressures of 5–200 MPa. These con-
ditions can be recreated in a laboratory but it is harder to replicate other
effects such as fluid contamination and solid deposition. The rheology
of the reservoir fluid is often measured at ambient conditions and then
extrapolated to reservoir conditions. This requires a good model for the
temperature and pressure dependence.

Conventional viscometers are currently unsuitable for in situ measure-
ments for a host of reasons. Falling body viscometers contain free moving
parts with small clearances between them that might be blocked by sol-
ids, such as sand, and prevent the body falling. Indeed, the orientation of
the instrument with respect to the gravitational field must be known and
this is not always the case. Capillary viscometers need not only a device to
produce a constant fluid flow and measure the pressure drop but also an
external pressure to balance the internal pressure so that distortions can-
not occur in the tube. Torsional oscillating-body viscometers containing
fluid can perform poorly at high pressures since it is inevitable that distor-
tions in the dimensions of the body will occur. The damping effect on the
discs of disc viscometers induced by liquids at such conditions is often so
large that the mass of the disc required cannot be supported by any avail-
able method. The simple and compact vibrating wire viscometer is more
appropriate for the far-from-ambient conditions that are found down-hole.
It is able to work in hostile conditions because the wire body is electrically
insulated from the pressure vessel [1]. Unfortunately, the use of the vibrat-
ing wire viscometer is limited by the equations used to evaluate the param-
eters in its mathematical model. By applying the Navier–Stokes equations,
the model is only representative if the fluid tested is Newtonian. How-
ever, if the velocity of the wire is estimated for a range of currents and
for several resonance frequencies it is plausible that vibrating wire viscom-
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eters may provide useful information for non-Newtonian fluids. This con-
cept has yet to be proven with measurements.

Clearly changes are needed to both the mechanical designs of the
viscometers and the mathematical equations supporting them that are
needed to interpret the measured quantities to provide precise values of
the fluid viscosity in oil/gas wells in situ. This prompts the development
of a new viscometer that will not only remain sufficiently accurate in hos-
tile conditions but is also capable of measuring both Newtonian and non-
Newtonian fluid properties. We recognize that a trade-off may have to be
made between precision of the measurement and the ability to withstand
hostile conditions as well as to operate within a wide range of fluids. The
viscometer analyzed in this study enjoys a number of distinct advantages
over alternative devices that are used in both Newtonian and non-New-
tonian fluids: first, it contains only one moving part (all other compo-
nents being electrical). Second, it is a factor of about 10 smaller and can
therefore be mounted in confined spaces. Third, it requires no specific ori-
entation with respect to the gravitational field. Finally, it can operate at
pressures well in excess of ambient. We conclude that the production of a
novel type of small-scale viscometer that can be used down-hole would be
advantageous in this field.

Viscosity describes the internal friction of a moving fluid and its
adhesive/cohesive or frictional properties. Fluids are termed “Newtonian”
if they obey Newton’s law of viscosity. Such fluids have a constant vis-
cosity and density at a constant temperature and pressure whatever the
shear rate. The Navier–Stokes equations for the motion of an incompress-
ible Newtonian fluid [2] are:

qt + (q ·∇)q =− 1
ρ

∇p +ν∇2q (1)

∇ ·q =0 (2)

where q denotes the fluid velocity, p is the pressure, t is time, ρ is the fluid
density, and ν is the kinematic viscosity.

Non-Newtonian fluids have a variable viscosity at a constant temper-
ature and pressure that depends on the rate of shear and hence is referred
to as a “shear-rate dependent” viscosity. Most fluids of this sort can be
divided into one of the following three categories; a viscous fluid, an elas-
tic fluid, or a viscoelastic fluid. In a purely viscous fluid all energy added
is ultimately dissipated into temperature increase, whereas in a completely
elastic fluid all the energy added is stored in the fluid and stress is directly
proportional to strain. We can measure density in an incompressible non-
Newtonian fluid but we have no analogous equation for the shear stress.
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The viscosity may no longer be assumed to be constant and the shear
stress must also be measured. In contrast to a Newtonian fluid, experi-
ments yield a number of material functions that can depend on time, fre-
quency, shear rate, and a host of other variables.

When testing is carried out during drilling for oil, it must be
recognized that some drilling fluid additives are non-Newtonian. One such
example is sodium bentonite, which is often added to increase the density
of drilling mud. The properties of such muds can change after interaction
with oil, formation rock or water, so that they exhibit different rheology.
One such behavior is to reach a yield stress, then pass into a Bingham
phase. Alternatively, a Hershel–Bulkley law is often an adequate descrip-
tion [3]. Schlumberger have carried out rheological tests on a number of
water-based muds, such as may be present in an oil reservoir, at tempera-
tures up to 130◦C and pressures up to 100 MPa. From these results it has
been deduced that muds have a largely pressure-independent yield stress
with a sensitivity to temperature that increases with increasing tempera-
ture. As well as possessing a yield stress, such muds exhibit shear thinning
behavior. It was found that this behavior could best be represented by a
Herschel–Bulkley model.

The Herschel–Bulkley model employs a general law for viscosity that
may be used to model non-Newtonian characteristics. Its formulation is

τ = τy +Kγ n (3)

where τ is the stress, τy is the yield stress, γ is the shear rate, and K and n

are constants. In the special case when n=1 and τy =0, the fluid is New-
tonian and K becomes the Newtonian viscosity µ.

In this study, we assume that the fluid is a homogeneous liquid. In
both Newtonian and non-Newtonian cases, we assume that the fluid is
incompressible and consider only harmonic non-Newtonian fluid motion.

2. SENSOR

The bulk of the sensor is made of anisotropic single crystal silicon
with crystalline direction 〈100〉. We therefore assume that the mass and
mechanical properties of the device will correspond those of pure silicon.
To simplify the model, the silicon is assumed to be isotropic. The mate-
rial properties in certain crystalline directions can be calculated from basic
crystal properties. For silicon in the 〈100〉 plane, the isotropic values that
best reflect the anisotropic behavior are given by Spiering et al. [4] and
Petersen [5]. The MEMS fabrication process for the viscometer described
in this study is, to all intents and purposes, the same as that described in
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Fig. 1. Transversely oscillating MEMS.

Goodwin et al. [6] for an edge-clamped plate used to measure density and
viscosity for Newtonian fluids.

The vibrating viscometer design described here is a MEMS (micro-elec-
tro-mechanical-system). The dimensions of the sensor are extremely small,
its thickness and amplitude of motion being measured in µm. Exact dimen-
sions are shown in Fig. 1. The device has both electrical and mechanical
components. The oscillating plate is a mechanical element that can be set
in motion when an alternating electric current I is passed through an alu-
minum wire coil atop the plate, which is held in an externally applied mag-
netic field. An external electromagnet or a fixed permanent magnet holds the
plate in a constant magnetic field, B. This produces corresponding alternat-
ing forces, F , that force the plate to oscillate. This force can be altered by
changing either the current or the intensity of the magnetic field. When the
frequency of the current reaches the first natural frequency of the sensor,
the plate will oscillate at the maximum amplitude in the first bending mode
at its resonant frequency. These modes differ for each MEMS design.

The conductor and magnetic field that together make up the actuator
have no interaction with the detector. The detectors used in this MEMS
device and that of [6] are polysilicon piezoresistive strain gauges. These
are placed at points where maximum and minimum strains occur and
form a Wheatstone bridge. The optimum positioning was found using finite
element analysis. This was carried out at Schlumberger Research using the
finite element package ANSYS. The Wheatstone bridge is formed from the
top six legs on each side, closed by wire-bonding. There are 24 legs on each
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side. The gauges detect the varying strains in the sensor as it vibrates and
enable one to measure a resonance frequency f and an associated quality
factor Q. The resonance characteristics f and Q of the MEMS device will
be affected by the addition of a surrounding fluid. Near to the surface of the
vibrating sensor the fluid is moved, causing the addition of effective mass
or inertia to the intrinsic mass of the plate. This results in a decrease in f .
Q also decreases from the Q measured for a less viscous fluid since viscous
energy is lost to the shearing motion of the fluid around the sides of the
plate. Therefore, measurements of f and Q for a sensor in a fluid should
allow the viscosity ν and density ρ of the fluid to be obtained.

3. MODELING THE DEVICE

We model the plate as an elastic solid that oscillates transversely in
a fluid. Two different modes of operation for the determination of viscos-
ity will be discussed. The “forced” mode is time-periodic, with the plate
oscillating at a fixed forced frequency. We will also analyze the “plucked”
problem, considering the transient or time-dependent behavior, where the
amplitude of oscillation varies in time after an initial perturbation. We
will consider the general case of incompressible fluids, using the Navier–
Stokes equation to model Newtonian fluid motion and a reduced form of
Maxwell’s equations for viscoelastic fluid motion. One of the key aims of
this study is to determine whether the device should be used in forced or
plucked mode, and to identify the key physical parameters that may be
used to optimize its operation.

The plate will oscillate at the maximum amplitude in the first bend-
ing mode at resonant frequency when the current reaches the first natural
frequency of the sensor. An armature will generally possess several modes
of vibration and thus give a complex interaction with the surrounding
fluid. To obtain a description of the fluid–armature interaction that may
be modeled, we will assume that the modes are well separated and that
each mode may be described by a linear simple harmonic oscillator. The
first four modes of the sensor are shown in Fig. 2. These diagrams were
reproduced from analysis that was carried out at Schlumberger Research
using the finite element package ANSYS. The mode of interest for the
MEMS device considered in this study is the 3rd, in which the plate oscil-
lates in a plane, thereby reducing the dimensionality of the problem.

3.1. Strain on the Plate

Once the plate is in motion, strain will be produced in any two con-
necting parts of the viscometer. The most important of these are the legs
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Fig. 2. Various modes of oscillation of the “spider”.

that connect the plate to the main viscometer body. For simplicity, it is
assumed that the oscillatory motion will result only in the deformation of
these legs. The elastic restoring force for each individual leg is

Fer ≡ s3EdA

l3
, (4)

where s is the leg width, l is the length of the leg, d is the depth of the leg
(also the plate depth), E is the Young’s modulus of the leg material, and
A is the amplitude of motion. Assuming that it is only dependent on the
mass of the plate Mp (=aBdρs), we can write the undamped frequency for
N legs as

ω0 =
√

NFer

AMp
=
√

NEs3

l3aBρs
(5)

where a is the length of the plate, B is the plate width, and ρs is the
density of the plate material.

3.2. Forced Oscillations

3.2.1. Mechanics of the Infinite Plate

We assume that the plate oscillates in an infinite volume of liquid and
is itself infinite in both the x and z directions. The plate is also assumed
to lie in the x–z plane. The surface of the plate bounds an incompressible
fluid. The plate is forced to oscillate in the x direction with simple har-
monic motion confined to the x–z plane. The velocity of the plate, shown
in Fig. 3, is thus q = [Up(t),0,0]T with Up =U0Re(e−ıωt ), where ω is the
frequency of oscillation and U0 characterizes the amplitude of the motion.
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Fig. 3. Plane oscillating in the x-direction and in the vicinity of stationary top plate.

3.2.2. Newtonian Viscous Flow

We assume that the fluid moves according to a plane parallel shear
flow [7] with velocity q= (u(y, t),0,0)T . With no applied pressure gradient,
the Navier–Stokes equations (in the absence of gravity) therefore reduce to
the one-dimensional diffusion equation,

∂u

∂t
=ν

∂2u

∂y2
. (6)

Equation (6) must be solved subject to appropriate boundary conditions.
With no slip at the plate, we therefore impose

u(0, t)=Up(t)=U0Re(e−ıωt ), (7)

u→0 as y →∞. (8)

The solution is given by u = U0e
− y

δ Re(eı(
y
δ
−ωt)), where δ =

√
2ν
ω

is the
viscous penetration depth. Taking real parts, we find that

u=U0e
− y

δ cos
(y

δ
−ωt

)
. (9)

Another way of operating the device is to add a second (stationary) plate
in the x–z plane above the oscillating plate. When such a plate is present
at a height y =+h, the boundary conditions become

u(0, t)=U0Re(e−ıωt ) and u(h, t)=0. (10)

We now find that

u=U0e
− y

δ Re

[
eı(

y
δ
−ωt)

(
1− e− 2

δ
(h−y)e

2
δ
ı(h−y)

1− e− 2h
δ e

2h
δ

ı

)]
(11)
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and hence

u=U0e
− y

δ ×
[

cos( y
δ

−ωt)− e− 2h
δ cos( y−2h

δ
−ωt)− e− 2

δ (h−y) cos( 2h−y
δ

−ωt)+ e− 2
δ (2h−y) cos(− y

δ
−ωt)

1−2e− 2h
δ cos(2h/δ)+ e− 4h

δ

]
.

(12)

Presently Eqs. (9) and (12) will be used to determine the properties of the
fluid.

3.2.3. Viscoelastic Flow

The simple model developed above may also be used to analyze
the viscosity of non-Newtonian, and in particular viscoelastic fluids. We
assume that a viscoelastic downhole fluid obeys the Maxwell equations of
motion

qt + (q ·∇)q =− 1
ρ

∇p +∇ ·σ (13)

∇ ·q =0 (14)

where the stress tensor σij is given by

σıt + (q ·∇)σı − ∂qı

∂xk

σk − ∂q

∂xk

σkı + 1
θ
σı = ν

θ

(
∂qı

∂x

+ ∂q

∂xı

)
. (15)

Here θ = ν
G

, where G is the shear modulus of the fluid. Since q is indepen-
dent of x, the equations reduce to

∂2u

∂t2
+ 1

θ

∂u

∂t
= ν

θ

∂2u

∂y2
. (16)

In a similar way to the Newtonian case, with no stationary plate present,
Eqs. (7) and (8) are the appropriate boundary conditions. Equation (16)
may be solved to yield

u=U0e
−√

ω
ν
(1+ω2θ2)

1
4 y sin(

γ
2 )Re(eı(

√
ω
ν
(1+ω2θ2)

1
4 y cos( γ

2 )−ωt)), (17)

where γ =arctan 1
ωθ

. Taking real parts, we find that

u=U0e
−√

ω
ν
(1+ω2θ2)

1
4 y sin(

γ
2 ) cos

(√
ω

ν
(1+ω2θ2)

1
4 y cos(γ /2)−ωt

)
. (18)
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Once again, a second stationary infinite plate may be added in the x–z

plane at y =+h, in which case the boundary conditions are given by Eq.
(10). We then find that

u=U0Re

[(
sinh(λ(h−y))

sinh λh

)
e−ıωt

]
(19)

where

λ=
√

ω

ν
(1+ θ2ω2)1/4eıγ /2. (20)

3.2.4. Frictional Force and Power on the Plate for Newtonian Flow

We may now use Eqs. (9), (12), (18) and (19) to analyze the proper-
ties of the fluid surrounding the plate. The frictional force S acts in the x-
direction since this is the only direction in which the oscillating plate has
a non-zero velocity component. S may be determined using the stress ten-
sor σij [8], and acts over a surface area of twice the product of the length
and breadth of the plate. For Newtonian flow,

S =2aB[σyx ]y=0 =2aB

[
µ

∂u

∂y

]
y=0

. (21)

The power required to move the plate is defined by the product of the fric-
tional force and the fluid velocity evaluated at the plate surface. For a vis-
cometer in forced mode, the average power over a period of oscillation is

P |y=0= ω

2π

∣∣∣∣∣
∫ 2π

ω

0
Re(Su |y=0) dt

∣∣∣∣∣ . (22)

For the Newtonian case the fluid velocity, u, is given by Eq. (9). Using this
in Eq. (21), and assuming that U0 is real, we find that

S =−2aB
√

(ωµρ)U0 cos
(

ωt + 1
4
π

)
. (23)

The velocity of the oscillating plate is Up =U0 cosωt ; we therefore observe
a phase difference between this velocity and the frictional force. The rele-
vant substitutions may now be made into Eq. (22) to give
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|P |y=0 | = ω

2π

∣∣∣∣∣
∫ 2π

ω

0
(−2aBU0 cos (ωt)

√
(ωµρ)U0 cos (ωt + π

4
))dt

∣∣∣∣∣
= 1√

2
aBU0

2√ωµρ. (24)

Equation (24) may now be rearranged to yield

µ= 2
ωρ

[ |P |y=0 |
aBU0

2

]2

, (25)

giving the viscosity as a function of the density, the power and U0. With
an added stationary plate at y = h, a similar calculation to that shown
above may be performed. The average power in this case is given by

|P |y=0 |= U2
0 aBµ

δ

[
e4h/δ +2e2h/δ sin(2h/δ)−1
e4h/δ −2e2h/δ cos(2h/δ)+1

]
. (26)

In contrast to the case where no top plate is present, Eq. (26) cannot now
be rearranged to give a simple explicit formula for the viscosity µ as the
viscous penetration depth δ =√

2µ/ρω appears in Eq. (26) in a compli-
cated fashion. Notwithstanding this, Eq. (26) may be regarded as a tran-
scendental equation for µ that could easily be solved.

In principle, therefore, Eqs. (25) and (26) allow the determination of
the fluid viscosity provided U0, ω, the power, the fluid density, and the
dimensions of the plate are all known. The practical feasibility of using
the viscometer in this mode will be discussed further in Section 4.

3.2.5. Viscoelastic Flow

Though in principle the calculations for the frictional force and the
power on the plate may be carried out in the same way for a viscoelastic
fluid as for a Newtonian fluid, matters are complicated by the fact that,
though u is known (from Eq. (18) and Eq. (19), respectively) when the
device is operated both without and with a stationary upper plate, the
shear stress on the plate is no longer given by the simple formula µuy |y=0.
Instead, it is necessary to solve the equation

∂σ12

∂t
+ 1

θ
σ12 = ν

θ
uy. (27)

Though we omit the details for brevity, it is nevertheless possible to derive
a (rather complicated) expression for the power on the plate. Once again,
it is not possible to solve for the viscosity and write a closed-form expres-
sion for µ: however, the resulting equation could easily be solved (as for
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the Newtonian case above when a top plate was added) to determine the
viscosity as a function of the other measured parameters. We comment
further on the viscoelastic case in Section 4.

3.3. Decaying Oscillations

We now consider the viscometer in what may be termed “plucked”
mode. The plate will now resemble a damped harmonic oscillator with a
corresponding decay rate. By analyzing the decay in oscillation amplitude
we then aim to infer the viscosity and/or density of the surrounding fluid.
Since we may need to ignore early oscillations which could exhibit irreg-
ular transient behavior, our aim is to identify conditions where the plate
oscillates a relatively large number of times in the fluid before the oscil-
lations decay completely. In this manner, a suitably large amount of data
can be collected.

To operate the viscometer in “plucked” mode, the plate is moved
to an arbitrary displacement (X) and held there by an external force.
Measurements begin when the external force is removed and the plate
is released with zero initial velocity. It is assumed that the legs around
the edge of the plate provide some damping, and in addition the plate is
retarded by the fluid shear stress (µuy |y=0) that acts over the top and bot-
tom surface areas of the plate (of total area 2Ba). For Newtonian flow,
u(y, t) is determined from Eq. (6), and the displacement x(t) of the plate
is described by

ρsdBa
d2x

dt2
+ r

dx

dt
+k2x =2Ba(µuy |y=0). (28)

Here, r characterizes the damping of the plate legs and k is the associ-
ated spring constant. Equation (6) must be solved subject to the boundary
conditions

u(t)= dx
dt

at y =0 (29)

u→0 as y →∞ (30)

and the initial condition

u=0 at t =0. (31)

We take a Laplace transform in t to recast the equation for u(y, t) as
an ordinary differential equation for û(y, s). The problem becomes

sû−νûyy =0, (32)
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û(0, s)= sx̂ −x(0) (33)

and

û(∞, s)=0. (34)

Since y
√

s
ν
→∞ as Re(s)→∞, we have

û(y, s)= (sx̂ −x(0))e−y
√

s
ν . (35)

We now take the Laplace transform of Eq. (28) to yield

(s2 +As +B)x̂ − (s +A)x(0)=Cµûy |y=0, (36)

where A= r
ρsBda

, B= k2

ρsBda
, and C= 2

ρsd
. Equation (35) may now be differ-

entiated with respect to y and evaluated at y =0, before being substituted
back into Eq. (36). An inverse Laplace transform may now be taken to
yield

x =x(0)L−1 [f (s)] , f (s)= s +A+C
√

µρs

s2 +As +B+C
√

µρs
3
2

. (37)

The Laplace inversion in Eq. (37) is complicated by the numerous singu-
larities in f (s). By multiplying f (s) with its algebraic conjugate, f (s) can
be rewritten to show the singularities more clearly in the form

f (s)= (s +A)(s2 +As +B)−E2s2

(s2 +As +B)2 −E2s3
+ EB

√
s

(s2 +As +B)2 −E2s3
, (38)

where E = C
√

µρ. We observe that four poles (with associated residues)
will occur due to the quartic polynomial in the denominator of the two
fractions. It can be assumed that the poles will be two pairs of com-
plex conjugates that must have negative real parts for oscillation decay to
occur. The poles are determined by finding the four roots of the quartic
polynomial equation:

s4 + (2A−E2)s3 + (2B+A2)s2 +2BAs +B2 =0. (39)

A branch cut is introduced by the square root in the second term of
Eq. (38). The inverse Laplace transform will have three main contributing
terms, namely an exponential term for each complex conjugate pair and
an algebraic term arising from the branch cut. We now approximate the
solution by considering the behavior at different times.
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3.3.1. Small Time Approximation

Though closed-form inversion of the Laplace transform in Eq. (37) is
awkward, we may investigate the behavior of the viscometer for both small
and large times. To do this we consider the asymptotic expansions of f (s)

for small time (large s) or large time (small s) (see [9]). For the small time
behavior we expand f (s) about s =∞ to give

f (s) = (s +A+E
√

s)

s2

[
1+ E√

s
+ A

s
++ B

s2

]−1

= 1
s

− B
s3

+ BE

s
7
2

+B
A−E2

s4
+ B(E3 −2EA)

s
9
2

· · · . (40)

We are now able to take the inverse Laplace transform to show that, when
t ∼0,

x(t)=x(0)

[
1− B

2
t2 + 8BE

15
√

π
t

5
2 +B

A−E2

6
t3

]
+O(t7/2). (41)

The most important physical conclusion from Eq. (41) is that the first two
terms (and hence the leading-order small time behavior) involve only the
physical parameter B, implying that, soon after the viscometer is set into
motion, its behavior depends only on the properties of the plate and not
on the surrounding fluid.

3.3.2. Large Time Approximation

To determine the large time behavior, we expand f (s) about s =0 to
give

f (s) = (A+E
√

s + s)

B

[
1+

(
A
B

s + E
B

s
3
2 + 1

B
s2
)]−1

= A
B

+ E
B

√
s + B−A2

B2
s − 2AE

B2
s

3
2 + A3 −2AB−E2B

B3
s2 + 3A2E−2EB

B3
s

5
2 +· · · .

Taking the inverse Laplace transform now gives

x(t)=x(0)

[
E
B

√
π

t
3
2

− AE

B2

√
π

t
5
2

+ (3A2E−2EB)

B3

3
√

π

4t
7
2

]
(t ∼∞). (42)

The significance of this result lies in the fact that the analysis shows that,
contrary to what might be anticipated, the ultimate decay of the oscilla-
tions is algebraic, rather than exponential. Since the analysis of many sim-
ilar devices is based upon determining fitted exponential decay rates, the
algebraic nature of the decay should be taken into account when interpret-
ing real results from the viscometer.
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3.3.3. Decaying Oscillations: Numerical Solution

Though technically a complete analysis of the viscometer operated in
plucked mode only requires the solution of the Laplace inversion problem
Eq. (37), a complete inversion is awkward and involved. A simpler way to
proceed is to recast the problem and proceed numerically. For simplicity,
we treat only the Newtonian case where a top plate is not present. Solv-
ing the fluid problem subject to the conditions u(y,0)=0, x =x(0) at t =0,
u(0, t)= ẋ(t) and u→0 as y →∞ using a Laplace transform, we find that
Eq. (28) may be rewritten as

d2x

dt2
+A

dx

dt
+Bx =− E√

π

∫ t

0

d2x(s)

ds2√
t − s

ds, (43)

where x =x(0)=X and dx/dt =0 at t =0. We now non-dimensionalize the
problem in order to simplify the equation and identify the key parame-
ter combinations. We let x =Xx̃ and scale time using t =

√
W
k

t̃ where W =
ρsBda is the weight of the plate. If we further set s =

√
W
k

s̃, then Eq. (43)
becomes

d2x̃

dt̃2
+α

dx̃

dt̃
+ x̃ =−β

∫ t̃

0

d2x̃(s̃)

ds̃2√
(t̃ − s̃)

ds̃, (44)

where α = r

k
√

W
and β = 2

√
µρBa

√
πkW

3
4

are dimensionless variables whose values

are determined by the material properties of the plate, and the viscosity
and the density of the surrounding fluid. Equation (44) may now be solved
numerically.

We define x̃i to be the value of x̃(t̃ ) at time t̃ = t̃i with i =0. . ...n and
t0 =0. We employ a constant time step �t̃ so that t̃i+1 − t̃i =�t̃ . The initial
conditions are that the plate starts from a stationary position (with zero
velocity) at a distance X from the origin. Thence

dx̃(0)

dt̃
=0 and x̃(0)=1. (45)

We approximate the first and second derivatives of x̃ with respect to t̃

using central differences [10] so that

dx̃

dt̃
= x̃′(i)� x̃i+1 − x̃i−1

2�t̃
(46)

and

d2x̃

dt̃2
⇒ x̃′′(i)= x̃i+1 −2x̃i + x̃i−1

(�t̃)2
. (47)
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To deal with the integral term in Eq. (43), we assume that x̃′′ is constant
on the interval [t̃j , t̃j+1] and use the trapezium rule. Thus, for i =1,2, . . ..

−β

∫ t̃i

0

x̃′′(s̃)√
t̃ − s̃

ds̃ � −β

i∑
j=1

∫ j�t̃

(j−1)�t̃

x̃′′(j)+ x̃′′(j −1)

2
√

i�t̃ − s̃
ds̃

= −β

i∑
j=1

(x̃′′(j)+ x̃′′(j −1))
√

�t̃(
√

i − j +1−
√

i − j).

This allows Eq. (43) to be approximated by

x̃i+1 −2x̃i + x̃i−1

(�t̃)2
+α

(
x̃i+1 − x̃i−1

2�t̃

)
+ x̃i +β

(
x̃i+1 − x̃i − x̃i−1 + x̃i−2

(�t̃)
3
2

)

=−β

i−1∑
j=1

x̃j+1 − x̃j − x̃j−1 + x̃j−2

(�t̃)
3
2

(
√

i − j +1−
√

i − j).

(48)

This can be rearranged to give x̃i+1 in terms of x̃i , x̃i−1, and x̃i−2 so
that all the x̃i may be determined for i �3. To allow the calculation to
begin, we need to determine x̃0, x̃1, and x̃2 independently. Since x̃0 =1 and
x̃′(0)=0, a forward difference may be used to show that x̃0 = x̃1 =1. Since
the integral term in Eq. (44) is zero when t̃ = 0, the scheme given by Eq.
(48) may now be applied with i =1 and the right-hand side set to zero to
yield the value of x̃2 and thus allow the calculation to begin. For simplic-
ity, in this study we ignore the damping of the legs and set r =0, so that
α = 0. The final (dimensionless) numerical scheme to determine the x̃i is
thus

x̃0 = 1

x̃1 = 1

x̃2 = 1− 2(�t̃)2

2+2β
√

�t̃

x̃i+1 =
(

2(�t̃)2

2+2β
√

�t̃

)[
x̃i

(
2

(�t̃)2
−1+ β

(�t̃)
3
2

)

+x̃i−1

(
β

(�t̃)
3
2

− 1
(�t̃)2

)
− x̃i−2

(
β

(�t̃)
3
2

)

−β

i−1∑
j=1

x̃j+1 − x̃j − x̃j−1 + x̃j−2

(�t̃)
3
2

(
√

i − j +1−
√

i − j)


 . (49)
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Fig. 4. (a) Numerical solution for β =1; (b) numerical solution for β =0.1. (Vertical axis:
dimensionless displacement x/X. Horizontal axis: time (units of 10−4 s)).

The key dimensionless quantity in this system is β; its magnitude will
determine the range and suitability of the viscometer. Numerical plots of
the solution with µ=0 may be used with Eq. (5) to find the vacuum fre-
quency of the plate and infer the constant k. We find that k2 =9025 kg·s−2.
The full numerical solution of the problem now allows us to estimate
what sorts of fluids the current viscometer specification may be suitable
for. Typical illustrative numerical solutions are shown in Fig. (4) (plots
produced in MATLAB [11]) . When β = 1 we observe that the system is
overdamped and will provide too few oscillations to allow helpful mea-
surements to be made. When β = 0.1 however (plot (b) of Fig. (4)), the
number of oscillations and decay produced is clearly much more suitable
for data collection. In general, numerical experiments show that the ideal
value for β lies between about 0.001 and 0.1. With ρs =2320 kg·m−3, a =
2.4 mm, B = 1.6 mm, and d = 20µm we find that W = 0.178 × 10−6 kg and
β = �

√
µρ where � ∼ 0.051 kg−1· m2·s1/2. We conclude that the current

MEMS viscometer specification is suitable for fluids that satisfy 3.845 ×
10−4 kg2·m−4·s−1 < µρ < 3.845 kg2·m−4·s−1. At the low end of this range
the fluid would be similar to argon at a temperature of 293 K and a pres-
sure of 1 MPa (where the density is about 16 kg·m−3 and the viscosity
about 2.2 µPa·s) while the high end of the range corresponds to methyl-
benzene at a temperature of 293 K and a pressure of 99 MPa (where the
density is about 922 kg·m−3 and the viscosity about 4 mPa·s).

4. CONCLUSIONS

We have analyzed a new type of MEMS viscometer in both “forced”
and “plucked” modes. In forced mode, we were able to derive either
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closed-form expressions or equations for the viscosity as a function of the
density, power, amplitude and physical properties of the plate. Though in
principle this provides a very easy method of determining the viscosity
of drilling fluids, it requires knowledge of both U0 and the power of the
plate, both of which may be hard to measure in practice. Indeed, it may
not even be easy to be sure of some of the physical dimensions and prop-
erties of the plate and in particular the legs. The robustness of the sys-
tem when operated in forced mode is also a matter that must be consid-
ered. It is possible that continued operation may prove too much for the
integrity of the legs, and consequently the life of the device may be short.
Clearly a sustained experimental program is required. If the device could
be made to function in forced mode however, it is clear from the work car-
ried out above that it could be used to measure both Newtonian and non-
Newtonian fluid properties.

In plucked mode, the device has been analyzed to the extent that we
have been able to predict the type of fluid that it will be suitable for.
Evidently more experimental work is required, but this feasibility study
seems to show that the device could work well in this mode of opera-
tion. Though the details of the scheme given by Eq. (49) would change,
the analysis carried out above could also be used to analyze the perfor-
mance of the viscometer for non-Newtonian fluids and for versions of the
device that included a top plate.
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